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examined.  Kumerical  results of the  surface  wave  char- 
acteristics  are  given  for  one  typical case. 

Numerical  Solution of Initial Boundary Value 
Problems Involving Maxwell’s Equations 

in Isotropic Media 

KANE S. YEE 

Abstracf-Maxwell’s equations are replaced  by  a set of finite 
difEerence equations. I t  is shown  that if one  chooses the field  points 
appropriately, the  set of finite difference  equations is applicable for 
a  boundary  condition  involving  perfectly  conducting  surfaces. An 
example is given of the  scattering of an electromagnetic  pulse by a 
perfectly  conducting  cylinder. 

s 
INTRODUCTION 

OLUTIONS to  the time-dependent Maxwell’s equa- 
tions  in  general  form  are  unknown  except for 
a few  special  cases. The difficulty is due  mainly  to 

the imposition of the  boundary conditions. LT,7e shall 
show  in  this  paper  how to  obtain  the  solution  numer- 
ically  when the  boundary  condition  is  that  appropriate 
for a perfect  conductor.  In  theory,  this  numerical  attack 
can  be  employed for the  most  general  case.  However, 
because of the limited  memory  capacity of present  dal: 
computers,  numerical  solutions  to a scattering  problem 
for  which the  ratio of the  characteristic  linear  dimen- 
sion of the obstacle to  the m-avelength is large  still 
seem to  be  impractical.  We  shall  show  by  an  example 
tha t  in  the  case of two  dimensions,  numerical  solutions 
are practical  even  when  the  characteristic  length of the 

obstacle  is  moderately  large  compared  to that of an in- 
coming n-ave. 

A set of finite  difference  equations  for  the  system of 
partial  differential  equations will be  introduced  in  the 
early  part of this  paper. We shall then  show  that  with  an 
appropriate choice of the  points at which the  various 
field components  are  to  be  evaluated,  the  set of finite 
difference  equations  can  be  solved  and  the  solution will 
satisfy  the  boundary  condition.  The  latter  part of this 
paper will specialize  in  two-dimensional  problems, and 
an  example  illustrating  scattering of an  incoming  pulse 
by a perfectly  conducting  square will be  presented. 

AIAXTT-ELL’S EQVATION AND THE EQUIVALENT  SET 
OF FINITE DIFFERENCE EQUATIONS 

llaxwell’s  equations  in  an  isotropic  medium [ l ]  are:’ 

aB 
- + V X E = O ,  
at 

Manuscript received  August 24, 1965; revised January 28, 1966. D = €E, 
This work was performed  under the auspices of the U. S. Atomic 
Energy  Commission. 

California, Livermore, Calif. 
The author is with the Lawrence  Radiation  Lab.,  University of 

1 In MKS system of units. 

801 



YEE: SOLUTION OF INITIAL BOUNDARY VALUE PROBLEMS 303 

where J ,  p ,  and E are  assumed  to  be  given  functions of 
space  and  time. 

In a rectangular  coordinate  system,  (la)  and  (lb)  are 
equivalent  to  the following system of scalar  equations: 

dB,  aE,  aE, 
--=-.--. ( 2 4  

(2b) 

(2c) 

Jz, ( 2 4  

Ju, (24 

Jz, (20 

d t  ay d z  

at a z  ax 
dB, dE,  dE, 

_ _ _ = _ _ - -  

dB, aE,  dE, - 
at ay 8% 

at ay a z  

at dz ax  

aD, dH,  dH, _ -  

aD, dHz dH,  - 

dD, dH,  dH, 
at ax ay 

where we have  taken A = ( A z ,  A, ,   A , ) .  lye  denote a grid 
point of the  space as 

(i, j ,  k )  = ( i A x ,   j a y ,  KAz) (3 )  

and  for  any  function of space  and  time we put 

F ( i A x ,   j a y ,  kAz, %At) = Fn(i,  j ,  k ) .  (4) 

A set of finite difference equations  for  (2a)-(2f)  that 
will be  found  convenient  for  perfectly  conducting 
boundary  condition is as follows. 

For (2a) we have 

BZn+l/'(i,j  + 1. 2 ,  K + 4) - Bzn-"2(i,j + 3, K + 3) 
At 

E,"(i,j + 3, k + 1) - E y n ( i , j  + 4, K )  

E*"(i,j + 1, K + 3) - EZR(i,j,  k + 3) 
AY 

- - 
Az 

- 
* ( 5 )  

The finite  difference equations  corresponding  to  (2b) 
a n d   ( k ) ,  respectively,  can  be  similarly  constructed. 

For (2d) we have 

D,"i + Q , j ,  k )  - D,n-'(i + +, j ,  K )  
At 

Bz"-l"(i + 4, j  + 3, k )  - a,n-yi + +, j  - 3, K )  

AY 
- - 

ayn-l/S(i + 1 K + L) - H,n-l/2(i f 1 ' K - 4) 
2,37 2 - 293, 

Az 

+ Jzn-1/*(i + 3, j ,  K ) .  (6) 

The  equations  corresponding  to (2e) and  (2f), respec- 
tively,  can  be  similarly  constructed. 

The  grid  points  for  the E-field and  the H-field are 
chosen so as  to  approximate  the  condition  to  be dis- 
cussed  below as accurately  as possible. The  various  grid 
positions  are  shown  in  Fig. 1. 

( i , j ,k l  EY 

/ 

/ 
X -  

Fig. 1. Positions of various field components. The  E-components 
are in the middle of the edges and  the H-components are in  the 
center of the faces. 

BOUNDARY  CONDITIONS 

The  boundary  condition  appropriate for a perfectly 
conducting  surface  is  that  the  tangential  components of 
the electric field vanish.  This  condition  also  implies 
that  the  normal  component of the  magnetic field van- 
ishes  on the surface. The  conducting  surface will there- 
fore  be  approximated  by  a collection of surfaces of 
cubes,  the  sides of which are parallel to  the  coordinate 
axes.  Plane  surfaces  perpendicular to  the x-axis will be 
chosen so as  to  contain  points  where E, and E, are 
defined. Similarly,  plane  surfaces  perpendicular  to  the 
other  axes  are  chosen. 

GRID  SIZE AND STABILITY CRITERION 

The  space grid  size must  be  such  that  over  one incre- 
ment  the  electromagnetic field does  not  change sig- 
nificantly. This  means  that,  to  have meaningful  results, 
the linear  dimension of the grid must  be  only a fraction 
of the wavelength. We shall  choose Ax=Ay  =Az .  For 
computational  stability,  it is necessary to  satisfy a rela- 
tion  between  the  space  increment  and  time  increment 
At. When E and p are  variables,  a  rigorous  stability  cri- 
terion  is  difficult to  obtain.  For  constant E and p ,  com- 
putational  stability  requires  that 

 AX)^ + ( A Y ) ~  + ( A Z ) ~  > cAf = $/;At, (7) 

where c is the velocity of light. If cmsI is the  maximum 
light  velocity  in  the  region  concerned, we must choose 

d ( 4 ~ ) ~  + ( A Y ) ~  + ( A z ) ~  > cmaxAt. (8) 

This  requirement  puts a restriction on At for  the  chosen 
Ax,  Ay, and Az. 

MAXWELL'S EQCATIOXS IN Two  DIMENSIOXS 
To illustrate  the  method, me consider a scattering 

problem in two  dimensions. We shall  assume that  the 
field components  do  not  depend  on  the z coordinate of a 
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point.  Furthermore, we take E and p to  be  constants  and 
J=O. The  only source of our  problem  is  then  an  "in- 
cident"  wave.  This  incident  wave will be  "scattered" 
after  it  encounters  the  obstacle.  The  obstacle will be of 
a few "wavelengths"  in  its  linear  dimension.  Further 
simplification  can be  obtained if we observe  the  fact 
that  in cylindrical  coordinates we can  decompose  any 
electromagnetic field into  "transverse  electric"  and 
"transverse  magnetic" fields if E and p are  constants. 
The  two modes of electromagnetic  waves  are  character- 
ized by 

1) Transverse  electric  wave  (TE) 

H ,  = H ,  = 0, E ,  = 0, 

aH, aE, aE, -"a,=x-z' 
aH,  aE, aa, a& 

E - = - )  - E - >  (9) 
ay  at ax dt  

and 
2) Transverse  magnetic  wave  (TM) 

E ,  = & = 0, H z  = 0, 

aE, aH,  aH, 

dt ax a y  

ag, dE* aH, dE, 
at aY 

E - = - - -  

p - = - - ,  p d t = d . t - .  (10) 

Let C be a perfectly  conducting  boundary  curve. ?Ye 
approximate  it  by a polygon  whose  sides are parallel to 
the  coordinate axes. If the grid  dimensions are small 
compared  to  the  wavelength, we expect  the  approxima- 
tion  to yield  meaningful  results. 

Letting 
- 

T = ct = $/;t 

and 

+ - - EZn(i + $ , j  + 1) - E,"(i + % , j ) ]  (13a) 
1 AT 

AY 

1 AT 
- - - [EZn(i,j + 1) - ELn( i , j ) ]  (14b) z AY 

1 AT 

Z Ax 
+ - - [aqi + 1,j) - E P ( i , j ) ] .  (14c) 

KUMERICAL COMPUTATIOMS FOR TXI WAVES 

For further numerical  discussion we shall  limit  our- 
selves to   the   TM waves. In  this  case we use the finite 
difference equations (14a)-(14c). The  values  for Ezo(i , j ) ,  
H,1/2(i+$, j ) ,  and HZ1l2(i ,  j - $ )  are  obtained  from  the 
incident  wave.2  Subsequent  values  are  evaluated  from 
the finite  difference equations (14a)-(14c). The  bound- 
ary condition  is  approximated  by  putting  the  boundary 
value of EZn(i,  j )  equal  to zero  for any n. 

T o  be specific, we shall  consider the diffraction of an 
incident  T31  wave  by a perfectly  conducting  square. 
The dimensions of the  obstacle,  as well as the profile of 
the  incident  wave,  are  shown in Fig. 2. 

Ez=O , H y = O  

Ez=O 

j =33 
E,=O , ny=o 

/ 

j = l  / 
j i 

/ / / / / / / / / / /  / / / / / / / /  

i= 17 i=49 i=81 
H,=O 

Fig. 2. Equivalent  problem for scattering of a Thl wave. 

+ z - [H~E-~I/~((; + 4,j + 4) - ~ ~ n + W ( i  + $ , j  - +)] (13b) 2 M'e choose t such that when t = O  the incident  wave  has  not en- AT 

AY countered  the  obstacle. 
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Fig. 3. Results of the calculation of E, by means of (14a)-(14c) in 
the absence of the obstacle. The  ordinate is in  volts/meter  and 
the abscissa is the number of horizontal  increments. n is the 
number of time cycles. 
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Fig. 4. E, of the T&I wave  in the presence of the 
obstacle for various  time cycles when j = 3 0 .  

1.0 
0.5 n;5 
0 
0 

I 

I I I I I I 

-0'5 n~15 
I f  

- 1.0 

-0.5 

- 
\ r  

-1.0 
0 

-0.5 

0 I I I I I I 

n=25 

I I I I I I I - 

n.35 
-1.0 

-1.0 

\/- 

4 

0 I I I I l y r h  I 

-0.5 - \ /  
n.45 

-1.0 . 

o f !  
- 0.5 n=55 

0 I I I I I 

-0.5 
-1.0 

\ /  

0.5 
0 

1.0 

n.65 

n=7q I , I I I 

0.5 n=85 
A 

0 1' 
I I I I I I I 

1 0 2 0 3 9 4 0 5 0 6 0 7 0 8 0  

Fig. 5. E, of the TiLI wave for various  time cycles. j = S O .  
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Fig. 6.  E, of the Tbl wave for various  time cycles. j =  65. 
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Let  the  incident  wave  be  plane,  with  its profile being 
a half sine  wave. The  width of the  incident  wave  is 
taken  to  be CY units  and  the  square  has sides of length 
 CY units.  Since  the  equations  are  linear, we can take 
E,= 1 unit.  The  incident  wave will have  only  an E ,  
component  and  an H, component.  We choose 

AX = Ay = CY/% (15a) 

and 
AT = cAt = +AX = a/16. (15b) 

,4 finite  difference  scheme over  the whole x-y plane 
is  impractical; we therefore  have  to  limit  the  extent of 
our calculation  region. We  assume  that at time t = 0, the 
left  traveling  plane  wave is “near”  the obstacle. For a 
restricted period of time, we can  therefore  replace  the 
original  problems by  the  equivalent problem shoxn in 
Fig. 2. 

The  input  data  are  taken from the  incident  xave with 

[(x - 5: + G t ) T  1 &(x, y, t) = sin 

0 5 x - 50a + ct 5 Sa (16a) 

1 
z l u x ,  y, 0 = - -%(X, y, 0. (16b) 

From  the  differential  equation satisfied by Ez n-e con- 
clude  that  the  results  for  the  equivalent problem (see 
Fig. 2) should  approximate  those of the original  prob- 
lems,  provided 

0 5 nAr 5 64Ar, 

because the artificial  boundary  conditions will not affect 
our  solution  for  this period of time. 

For n>64, however,  only  on  certain  points n-ill the 
results of the  equivalent  problems  approximate  those 
of the original  problems. 

Numerical  results  are  presented  for  the T h I  waves 
discussed above. T o  gain  some  idea of the  accuracy of 
the finite  difference equation, we have used the  system 
(14a)-(14c) with  the  initial E ,  being a half sine  wave 
for the  case of no obstacle. We  note  that  the  outer 
boundary  conditions will not affect this  incident  wave 
as there is no H, component  in  the  incident  wave. 
Ninety-five  time cycles  were run  with  the finite  differ- 
ence  system (14a)-(14c), and  the  machine  output is 
shown  in  Fig. 3. The  oscillation and  the  widening of the 
initial  pulse  is  due  to  the  imperfection of the finite 
difference system. 

Figure  4  shows  the  value of E, of the TA.1 wave  as a 
function of the  horizontal grid coordinate i for a fixed 
vertical  grid  coordinate j = 30. At  the  end of five time 
cycles, the  wave  just  hits  the obstacle. The  line j = 3 0  
does  not  meet  the  obstacle,  but is “sufficiently”  near 
the  obstacle  to  be affected by a ‘[partiall>:  reflected” 
wave.  There  is also a partially  transmitted wave. The 
phase of the reflected wave is opposite  that of the  in- 
cident  wave, as required  by  the  boundary  condition of 
the2obstacle. There should  also  be a decrease in wave 
amplitude  due  to  rs-lindrical  divergence,  but  the  cal- 

culation  was  not  carried  far  enough  to show this effect. 
Figure 5 shows the  value of E, for the TAI wave as a 

function of the horizontal  grid  coordinate i for j = 5 0 .  
This line ( j  = 50) meets  the  obstacle,  and  hence we ex- 
pect a reflected wave  going  to  the  right.  These  expecta- 
tions  are  borne  out  in  Fig. 5. After  the reflected wave 
from  the  object  meets  the  right  boundary (see Fig. 21, 
the  wave  is reflected again.  This effect  is  shown for  the 
time cycles 75, 85, and 95. 

Figure  6  is  for j = 6 5 .  This line  forms  part of the  
boundary of the obstacle.  Because of the  required  bound-. 
ary  condition, E, is  zero  on the  boundary  point.  To  the 
right of the  obstacle  there  is a “partially” reflected wave 
of about half the  amplitude of a fully  reflected  wave. To  
the left of the  obstacle  there is a “transmitted”  wave 
after 85 time cycles. 

All these  graphs were obtained  by  means of linear 
interpolation  between  the grid points.  They  have been 
redrawn  for  reproduction. 

COhiPARISOW OF THE  COMPUTED RESULTS Ff’ITH THE 
KI‘JOWN RESULTS ON DIFFRACTION OF 

PULSES BY A WEDGE 

There exist  no  exact  results  for  the  particular  exam- 
ple we considered  here.  However,  in the case  when the 
obstacle  is  a wedge,  Keller and  Blank [2] and  Fried- 
lander [3] have solved the diffraction  problem  in  closed 
forms. In  addition,  Keller  [4]  has also  proposed a meth- 
od to  treat diffraction  by  polygonal  cylinders. To  carry 
out  the  method proposed by Keller [4],  one would have 
to use  some sort of finite  difference  scheme. The  present 
difference  scheme  seems to  be  simpler  to  apply  in  prac- 
tice.  For  a  restricted  period of time  and  on a restricted 
region,  our  results  should  be  identical  with  those ob- 
tained  from  diffraction by a  wedge. We  present  such  a 
cotnparison  along  the  points  on  the  straight  line coin- 
cident  with  the  upper  edge  (i.e., j = 65). 

Let  the sides of a  wedge  coincide with  the  rays B = O  
and e = &  Let  the physical  space  be O<r < C O ,  O < e < P .  
Let  this wedge be perfectly  conducting. If the  incident 
EL is given by 

n-here do is the  direction of incidence,  Friedlander  [3] 
has  shown  that  the  solution to this diffraction  problem 
is 

E=(Y, e, t )  = u(e - e,)f 
r 

-e<re+eo)*<o. 
* @+So)*= (0+8d+2m6; where m is an integer so chosen that 



where 

and 

k = -  a 

P 
sin k ( a  + +) 

Q(’’ ‘) = - cosh RE - cos R(a + +) 

sin .k(~ - 4) - 
cosh k t  - COS k(a - 4) 

At t = 0, the  incident  wave  hits  the  corner. 
The  discontinuities of the first  two  terms  across  the 

lines f3=O0+T and f3= -Oofa are  compensated  for  by 
the  contributions  from  the  last  integral. I t  can be shown 
that  for 

a 3a 
e = o o = - - ;  p = -  

2 2 

For  our  incident  wave we have4 

corner of the  square.  The zero  time  here  differs  from that of the 
4 The origin of the wedge is taken  to be the upper  right-hand 

numerical  integration. 
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Fig. 7. Calculation of E, for various  sycles.  These  results are based 
on (18). The origin of the  coordinate  and of the  time  have been 
adjusted t o  agree  with that used in the numerical  calculation. 

I 
[ O  otherwise. 

Results of the  computations  based  on (18) are shown  in 
Fig. 7. The  agreement  with  the  graphs on Fig. 6 appears 
to  be good,  even  for  this  coarse  grid  spacing. 
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